

Designing methods for more identity-obscuring and equitable sensing in shared spaces Andrew Xu, Jacob Biehl, Adam Lee

Motivation

Success of infrastructure-sensing will depend on fair and equitable use of the data.

- Shifting to smarter buildings and spaces comes at the cost of privacy
- Benefit of space sensing is not equitable to all stakeholders of the space
- Privacy-obscuring measures are necessary to preserve people's trust in public, shared spaces

Formative Assessment

Research Question: Can we design and create identity-obscuring visualizations that reveal information about space usage while still maintaining user privacy?

Mixed methods inquiry

- 1. Semi-structured interview (n=12)
- Online survey of privacy concerns and comfortability with different visualizations
- Lab demonstration of the visualizations in realtime
- Discussion of different parameters in the visualizations and participant sentiment

2. Amazon Mechanical Turk survey (n=100)

- Created vignettes with 12 actors across two spaces on normal activities in the spaces
- Online survey measuring how well visualizations obscure identities across the vignettes while still conveying information about space usage

Four types of visualizations. In order clockwise from the top-left: raw image, line filter, cartoon filter, inverted filter

A sample identification task given to the Mechanical Turks with only headshot image provided

Study room vignette of a group of 2 talking and a third individual working

Hallway vignette of two individuals working

Results

- Participants could only identify actors correctly 7.9% of the time
- Top four most frequently guessed actors were not actually in any scenarios
- Between most pairs of actors, there was no significant difference in identification accuracy

Table 1: Statistics of headshot versus full-body images of actors

	Precision	Recall	F-score
Headshot	0.0986	0.0867	0.0922
Full-body	0.0841	0.0747	0.0791

Table 2: Open-response accuracies across different vignettes

Vignettes	Number of groups	Group size	Qualified Responses
Study room 1	80/82=0.976	76/82=0.927	86/90=0.956
Study room 2	77/80=0.9625	72/80=0.9	82/86=0.953
Study room 3	87/87=1.0	87/87=1.0	87/87=1.0
Hallway 1	81/82=0.988	79/82=0.963	80/83=0.964
Hallway 2	67/68=0.985	45/68=0.662	73/73=1.0
Hallway 3	71/77=0.922	37/77=0.481	77/77=1.0

Future work

- Design and create interventions that allow users to directly interface with and benefit from behavioral data collected about shared spaces
- Examine whether these interventions make space use more equitable
- Explore how our systems impact and improve upon how spaces are designed