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Density & Height Control of VACNT in this Reactor 
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CONTROLLING THE MORPHOLOGY, CHEMISTRY, AND PROPERTIES OF NANOCARBONS IN THE NANOPRODUCT LAB

Custom-designed RTP-CVD reactor for decoupling

Typically gas-phase decomposition of hydrocarbon precursor, catalyst 

nanoparticle formation by thin film dewetting, and catalytic surface reactions 

in CNT nucleation/growth are coupled. 

Why decouple?
1. It’s difficult to fully understand each process independently
2. It’s more challenging to optimize growth in coupled recipes

Custom-designed reactor: resistive preheater for decomposition of gas-phase 

hydrocrabon and IR furnace (heating rate > 200 °C/s) for catalyst treatment 

and CNT growth

I. CNT forest height is directly proportional to catalyst formation temp. (Tc) at 

the same growth temp. (Tg).

II. CNT forest density is inversely proportional to growth temp. (Tg), regardless 

of the catalyst formation temp. (Tc).

Density is nearly independent on Tc, suggesting that catalytic activation density 

is mainly dependent on Tg

Optimum Tg 

for any Tc

Decoupling Tp, Tc, Tg in this RTP-CVD reactor 

More than 12-fold increase in forest 

height by heating the gases as they 

go through the spiral gas injector 

above 800 °C  

Decoupled recipe ➔ temp. is ramped 

in a separate catalyst formation step 

before the CNT growth step

Laser carbonization of polymers is an 

emerging technique that enables directly 

patterning conductive carbon electrodes 

for a plethora of flexible devices, including 

supercapacitors and sensors.

A continuous beam with power P is 

scanned across the polyimide film at a 

speed v with the sample surface at a 

distance z from the beam waist.

Photothermal interactions from the 

radiation absorption by the polyimide 

drive a rapid temperature increase that 

carbonizes polyimide locally and forms 

nanoscale sp
2
 nanocarbon.

Tilting the sample allows scanning the sample with different fluence values and 

hence investigate how fluence affects morphology of LINC. Discrete 

morphological transitions noted.

To gain more insight into the 

obtained LINC morphologies, 

untilted polyimide films are lased 

at different z values for the same 

power P = 18.4 W

These transitions capture the 

evolution of LINC morphology with 

increasing average fluence values. 

A model of these fluence-

dependent transitions is illustrated 

schematically

It shows the phenomenon of 

swelling and blistering of the 

polyimide, followed by the 

formation of pores that gradually 

increase in number, size, and 

anisotropy, leading to the 

formation of anisotropic cellular 

networks then wooly fibers
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Fluence dependent heteroatom-doped LINC electrodes with comparable carbon
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Increasing Fluence

Fluence dependent resistivity 

correlates with Raman & 

morphology
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Nanomolar sensitivity of LINC to dopamine 

detection depends on the chemistry of 

heteroatom-doped LINC

New insights 

into designing 

interfaces for 

droplet 

manipulation, 

pick-and-place 

applications, 

and localized 

control of 

reactions.

Transport of a water droplet via strain-

induced reversible switching of droplet 

adhesion with no loss or contamination

F-LINC shows 

high dynamic 

CAs on both 

directions (‖, 

⊥) and highly 

anisotropic CA 

hysteresis
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