

COLLABORATION WORKSHOP

Portable Photoluminescent Sensors for Critical Metals

Scott E Crawford, ^{1,2} Ki-Joong Kim, ^{1,2} James E Ellis, ^{1,2} Nathan A. Diemler, ^{1,2} and John P. Baltrus¹

Critical Metals: Crucial for Renewable Energy

Critical metals, such as rare earth elements, cobalt, lithium, and others, are essential to advanced technologies and renewable energy. Widespread global adoption of renewable energy technologies has spurred dramatic demand increases for these metals; however, the global supply of these metals is highly monopolistic in nature. As a result, there is increasing interest in domestic production from alternative resources such as coal and its utilization byproducts. Slow and expensive characterization costs remain a significant barrier for domestic production; therefore, portable, inexpensive sensors are needed for metals characterization

MOF-Based Detection of Rare Earth Elements (REE)

Energy Transfer to Encapsulated REEs Wavelength (nm Anionic Zinc Adeninate MOF Second Linker

Metal-organic frameworks (MOFs) are inherently porous with tunable pore properties. Here, a series of anionic zincadeninate MOFs are used, which transfer luminescent energy to encapsulated REEs, enabling part-per-billion (ppb) limits of detection. The MOF structure significantly impacts sensor performance in complex matrices such as acid mine drainage.

REE Sensitized	Limit of Detection (ppb)	Limit of Quantification (ppb)
Tb	5.7 ± 0.6	18 ± 2
Dy	170 ± 10	550 ± 30
Sm	184 ± 6	600 ± 100
Eu	18 ± 4	60 ± 10
Yb	260 ± 6	900 ± 20
Nd	100 ± 2	340 ± 7

Emission in Acid Mine Drainage Matrix: 3.3 pH, [Ca] = 59 ppm, [Mn] = 29 ppm, [Al] = 10 ppm Crawford, Ellis, Ohodnicki, Baltrus, ACS Applied Materials & Interfaces **2021**, 13, 6 7268 Crawford, Gan, Lemaire, Millstone, Baltrus, Ohodnicki, ACS Sensors 2019, 4, 1986 Crawford, Ohodnicki, Baltrus, J. Mater. Chem. C, 2020, 8, 7975-8006

UNIVERSITY OF PITTSBURGH INFRASTRUCTURE SENSING

Other Ceramics Phosphors Polishing Compounds Petroleum Refining Autocatalysts Metal Allovs Battery Alloys Magnets

- CHINA 82.8%
- AUSTRALIA 7.9%
- USA 3.2%
- INDIA 2.4%
- RUSSIA 2%
- THAILAND 1.6%
- MALAYSIA 0.2%

or insufficiently sensitive for "real-world" stream.

Technique	Instrument Cost	Detection Limit
ICP-MS	~\$180k	Part-per-trillion
XRF	~\$13-17k	10s of part-per-millio
LIBS	~\$30-50k	10s of part-per-millio
Luminescence Spectroscopy	~\$18-35k	10s of part-per-billior

ICP-MS: Inductively-coupled plasma mass spectrometry **XRF:** X-ray fluorescence spectroscopy

LIBS: Laser-Induced Breakdown Spectroscopy

